Global Lambda Networking with GLIF Serving Demanding Applications Worldwide

Lars Fischer
SUNET TREFpunkt
15 October 2008

The Rise of e-Science

LHC: A large, shared scientific instrument with distributed (global) use and vast resource requirements.

Not all users are equal

Cost Concerns

- Growth: demands, capacity, cost
 - In particular cost & power for routing
- Observations
 - Costs of optical port is 10% of switching port is 10% of router port with same capacity
 - Many high-volume traffic flows are community or project specific, with few & known sites
- Idea
 - Dedicated circuits for massive users
 - Go as low (in the protocol stack) as possible
 - Give each packet in the network the service it needs, but no more

Lambda Networking

- Offload heavy users onto (simple) private circuitswitched networks
 - High performance for demanding users
 - Better service for average users on shared IP
 - Save capacity and cost on routed networks
 - As a bonus, private networks provide predictable network properties (i.e., true QoS)
- Challenges
 - Capability to set up, manage lambdas
 - Coordination for multi-domain lambdas
 - International connectivity
- Early experiments, collaborations ~2000-2001

NORDUnet

2003 Lambda Grid Workshop

Founding of GLIF

- August 2003: third Lambda Workshop, in Reykjavik, hosted by NORDUnet and attached to the NORDUnet 2003 Conference
- 33 participants from Europe, Asia and North America agree to form forum for collaboration, coordination, and promotion for lambda networking:

GLIF: Global Lambda Integrated Facility

GLIF vision

Linking the World with Light

- Facilitate large-scale application through sharing of network resources
- Optical networks are the central architectural element in support of the most demanding e-science applications.
- Hybrid networks are the next-generation networks
 - Dedicated lightpaths for guaranteed high-speed few-to-few usage.
 - High-speed packet-switched, routed, shared Internet for regular many-to-many usage
- Research should not have any geographical boundaries.

What is GLIF

- GLIF is a collaborative initiative among worldwide NREN's and institutions.
 - GLIF enables and coordinates collaborative splicing of (federated) networks from individual resources
 - "it's not a network"
- GLIF is a world-scale lambda-based laboratory to facilitate application and middleware development
 - Enable experiments and collaboration
 - Promote middleware development
 - Facilitate novel applications
- Forum for discussion & presentation of progress on major challenges
 - Example: Control plane development

GLIF Organization

- Open to any organization sharing a vision of optical interconnection of facilities, who voluntarily contribute network resources (e.g. equipment, lambdas) or actively participate in relevant activities
- Lightweight governance structure.
 GLIF is managed as a cooperative activity
- GLIF has participants, not members
- GLIF is an open community
- Secretariat functions provided by TERENA with contributions from sponsors

Activities in GLIF

- Resource coordination
 - Open lightpath exchanges like internet exchange points for IP
 - Glueing together infrastructure
 - Coordination lists and meeting
- Short-lived Task Forces
 - Develop procedures, document best practice
 - Propose standards (but not a standards body)
 - Tools development & trials
 - Example: PerfSONAR taskforce
- Workshops every 6 months

1st Generation (2004)

- First NORDUnet lambda platform
- Services
 - 10G / 2.5 G shared IP
 - 1G (subrate) Ethernet lightpath service
- Design
 - Based entirely on leased lines
 - Cisco ONS 15454 SONET lambda service platform, OC48 carrier
 - Lambda service platform and IP service platform separate infrastructures (w/ shared PoP's)
 - Leased OC48 to NetherLight

(e-)VLBI

 Very long baseline virtual radiotelescope, created by correlating outputs of multiple actual radiotelescopes (VLBI)

iGrid 2005 e-VLBI demo

GLIF terminology

- GOLE: GLIF open lightpath exchange, comprised of one or more network devices performing lightpath switching.
- lambda: a high-capacity (optical) circuit which terminates on a GOLE
- lightpath [service]: a high capacity circuit or QoS-supported virtual circuit (or the concatenation of several of these to form an endend lightpath). A lightpath can take up a portion or all of the capacity of a lambda.
- GLIF network resources: GOLEs and lambdas

A GOLE

- The key infrastructure of the GLIF collaboration
- Open Exchange Points for circuit-switched networks – in the tradition of IP Internet Exchanges
- Everyone can bring a circuit and exchange traffic with everyone else
- A GOLE is typically a SDH/SONET switch matrix, possibly with (next-generation) Ethernet and photonic switching
- Each GOLE will have lambdas connecting it to other GOLEs

Topology of a GOLE

An Example GOLE

GOLE to GOLE networking

- In GLIF, end-to-end connectivity is constructed by piecing together circuits from GOLE to GOLE, eventually connecting end-sites
- There are GOLEs all over the globe
- GOLEs are typically operated by NRENs
- Coordination through GOLE operator meetings, mailing lists, personal network
- Resource sharing no inter-GOLE payment system established

NORDUnet 2nd Generation: Hybrid (2007)

Lambdas across the world

A European view

Live 4k video across the globe

- Collaboration between KTH and Keio University, Japan
- Challenge
 - Stream the Kyoto price ceremony, live, from Kyoto to Stockholm, using 4k video (Nov. 2007)
 - Use Sony projector, NTT encoder / decoder
- 4k video cinema quality
 - 4096 x 2160 pixels 4x HDTV 1080p
 - Uncompressed 4k = 8.6 Gbps
- 10G circuit provisioned in two weeks
 - GLIF resources, GOLE-to-GOLE
 - Across Pacific, North America, Atlantic, N. Europe

Korea – Norway Medical

- Medical Media HD Live Transmission
 - From Seoul, Korea to Trondheim, Norway
 - Test technologies for HD live medical surgery transmission
 - Viewing laparoscopy surgery in High Definition Video enable doctors to collaborate, learn, and see details normally not available
- Video Streaming
 - 800 Mbps, low jitter required
 - Dedicated 1 GE link Norway Korea provide by collaboration in GLIF

The Network

The Results

From Experiments to Production

- Demand of e-Science is growing
 - Initial experiments were successful now users expect a service – predictable, ubiquitous
 - New advanced user communities are appearing, expecting permanent infrastructures with local and global reach
- Advanced infrastructure is taken for granted
 - Vast network capacity (as well as massive storage and computing resources) is expected by e-Science projects; massive projects depend on this infrastructure.
 - It's the way science is done not an exciting experiment

e-VLBI

Nordic Astronomy OPN

NDGF Tier-1 for WLCG

- A virtual HPC centre, made of resources from major Nordic HPC sites
- Resources (Storage and Computing) are scattered
- 10G Private Network + 10G connections to CERN, Amsterdam, Ljubljana

NDGF Tier-1 Network

Optical Networking trends

- More bandwidth at lambda level
 - 10G now standard
 - 40G here, 100G coming soon
- More flexible handling of lambdas
 - From static configurations to tunable lasers and filters
 - Wavelength Selector Switches for flexible routing of entire lambdas in the optical domain
 - Alien waves for inter-domain lambdas
- Dynamic configuration
 - Allows control plane systems to alter lambda routes "on the fly"

Multi-domain control planes

- Users need ubiquitous end-to-end lightpath connectivity over a multi-domain infrastructure
- How to glue things together
 - Cooperation between networks requires a shared control plane
 - Centralized models will not scale and will have role and authority issues
- Create a loose cooperation between domains
 - Standardized interfaces between domains
 - Create user friendly AAA features
 - Promote middleware developments (and embedding)

NORDUnet 3rd Generation: WSS (2008+)

Nordic Infrastructure for Research & Education

NORDUnet

ALU 1626 Light Manager

- Wavelength Selector Switches
 - LH/ULH up to 96 channels
 - Add/Drop 72 channels
- Automatic system alignment
- Enhanced functionality
 - Tuneable filters
 - 50 GHz filters
- Long Haul:
 - Fully Tuneable ROADM
- Fully C band tuneable interfaces over any interface
 - 10 G Universal Transponder
 - STM-64
 - 10GE WAN & LAN
 - 40G transponder
 - PSBT (50 GHz SH)
 - qDPSK (50 GHz LH/ULH)
- Embedded Optical Protection
- Raman Amplification

- Same modules for OADM and ILA
 - Shelf
 - Amplifier

NORDUnet Nordic infrastructure for Research & Education

ALU 1850 TSS-320

SDH/SONET

- STM-1, 4, 16 & 64
- Cross-Connection
- Termination
- ETH Mapping over SDH
- Complete Scope of SDH/SONET Features

Ethernet

- 10GE LAN/WAN Optical
- GE Optical
- 10/100/1000 Electrical
- ETH Traffic Classification
- Complete Scope of Ethernet Features

CWDM

- Terminal, Hub, OADM Ring
- Stacked C-WDM Rings

MSPP

- CLI, SNMP and TL1
- 2008 GMPLS feature set

1850 TSS-320

Square kilometre Array

- \$2Bn investment in infrastructure
- Real-time data analysis at petabits per second
- Storage >40 years
- Building the world's largest computational & data facility in one of the world's most isolated locations

Heterogeneous Networking

- Don't attempt to build a single, complex network from different access, backhaul and core networks
- Hide the differences between technologies inside the relevant layers
- Give users freedom to use the network at each layer in any way they want

Reaching users

- So far innovative applications have to come to the emerging GLIF infrastructure
- The challenge is to bring GLIF to the desktop of researchers and to scientific instruments
 - Bringing dark fiber to remote instruments
 - Need for global collaboration to ensure global network reach
 - Bringing hybrid networking and lambda switching capability to campus LANs
- Network virtualization as a means to create heterogeneous networks of pure lambda resources and shared IP infrastructure

ALMA

ALMA

ALMA transporter

NorthernLight 2008

Nordic NREN Optical Networks

Sweden: SUNET

- Dark Fibre & DWDM acquired
- Ligthpath service in operation
- Ciena

Denmark: Forskningsnet

- Dark Fibre & DWDM acquired
- Lightpath Service being deployed
- AlcatelLucent

Norway: UNINETT

- Dark Fibre & DWDM acquired
- Ligthpath service in operation
- Siemens

Finland: FUNET

- Dark Fibre & DWDM acquired
- Lightpath service being deployed
- NokiaSiemens Networks
- Iceland: RHnet
 - Dark fibre network in Reykjavik area

Some Next Steps

Dynamic Circuit Networking

- Nordic DCN solution NORDUnet and Nordic NRENs Interoperable with major DCN approaches
- NORDUnet will push for standardization of interfaces and development of demonstration implementations
- Participate in interoperability trials

(Network) Virtualization

- FEDERICA: European testbed for network and service virtualization
- MANTICORE: Logical IP networks, integration of network virtualization across L1 - L3

Transmission

- Cross-border alien waves, multi-domain WSS
- 40G, 100G trials

Thank you!

