

BUILDING FEDERATED RESEARCH NETWORKS IN EUROPE

Lars Fischer, NORDUnet A/S TERENA Networking Conference Vilnius, Lithuania - 31 May - 3 June 2010

"Federated Network Architectures" study

- GN3 JRA1 Task 3 Federated Network Architectures
 - Part of the Future Networks (JRA1) activity of GN3
- Objectives
 - Optimise the use of network resources and to find practical ways to stitch together services from equipment originating in multiple domains, while maintaining a high quality of service.
 - Study alternative network architectures and investigate how effectively they can support the various multi-domain network and services that are planned to be ubiquitously supported by the GN3 community, thereby arriving at a set of recommendations for the architectural design optimum of both single- and multi-domain network infrastructures and services
 - Not limited to technical aspects
- Participants
 - SURFnet, PSNC, RedIRIS, CARNet, DFN, NORDUnet

Federated?

- What is a *federation*
 - an organisation composed of several autonomous members or partners, working towards a joint goal.
- What is *federating*
 - Creating a (complex) system from a resources contributed from autonomous entities
- What is a federated network
 - A network built from resources owned and operated by partners
- GÉANT
 - ... consortium is a federation of NRENs
 - ... network is not a federated network, but rather an entity separate from the networks of the consortium members
 - ... multi-domain services are (sometimes) created by federating
 - ... network operations is not federated (but some services are)

A Federated Network

Examples and Demand

- Survey of projects and use cases that requires federated network services and network services across multiple domains
 - Large European e-Science projects and area-specific networks
 - Implications for network services, network requirements
- Survey of NREN owned and operated resources
 - Building blocks for federated networks
 - National Networks dark fibre, DWDM
 - Cross-border Fibre Resources
- Survey of Federated Network Experience
 - LHCOPN Network and operations model
- Details in conference paper, GN3 report DJ1.3.1

Cross-border network resources in Europe

(2008 TERENA compendium)

Benefits and Challenges

Benefits

- Improved multi-domain services as resources are integrated across the federated network
- Increased options for further collaboration, i.e., operations
- Reduced capital expenditure
- Challenges
 - Management challenges: provisioning, fault handling, quality of service, security must be handled across multiple domains of control
 - Technology: Interconnecting and sharing resources complicated by unlike technologies, vendor differences, etc. across resource owners
 - Ensuring a unified view: the federated nature of the network should be transparent to users
 - Cost sharing: establishing a cost sharing model is not straightforward

Towards a Model for Federated Network Architecture

Federated Network Service Delivery

- Federated Network Services
 - End-to-end network services L1, L2, L2.5 lightpaths
 - Shared IP transport services
 - Network virtualization services
- Service delivery
 - Direct aggregation
 - Service network built from partner resources
- Dual role of network services
 - Building blocks for the federated network
 - End-user network services

Federated Network Building Blocks

Services

- Single-domain circuit services
- E2E network services
- IP network services
- Network virtualization
- Operations
 - NOC's
 - Network operations and management tools
 - Procedures, workflows
- Network and infrastructure elements
 - Individual network elements
 - Federation partner network resources (NREN networks)
 - Inter-partner network elements ("cross-border fibre")

Composition strategies & Federation models

- Service Aggregation
 - IP peering
 - Stitching lightpath services
- Service composition
 - Building federated core networks from partner transport services
- Loosely coupled federations
 - Best-effort based
 - IP Peering community
 - GLIF collaboration for end-to-end services
- Tightly coupled federations
 - SLA based
 - Shared service process basis
 - GN3 AutoBAHN
 - LHCOPN

Federated Networks Operations Challenges

- Not having central control requires new ways of performing network operations
 - Must deal with multiple domains of control
 - Requires additional tools and processes to handle inter-domain issues
- Challenges
 - Configuration. Federated services must be appropriately configured with respect to their use of NREN resources.
 - The fault and performance management processes and tools being used in the domains have to be integrated to resolve issues in federated services
 - Quality-of-Service
 - Accounting. Depending on the cost-sharing and service models used, charging may be required. The charging can be used for federation-internal cost-sharing or for user accounting.
 - Commons security standards and policies must be agreed
 - Management systems today are built for single-domain purposes and are therefore not suitable for a federated enviroment.

Meeting the operations challenge

- Federated Fault and Performance Management
 - GN3 tools: eduPERT, perfSONAR, I-SHARe, E2EMon
- Process- and workflow management
 - LHCOPN Workflow descriptions
 - E2Emon process management component
- Multi-domain Service Operations Experiences
 - eduPERT
 - eduroam
 - E2ECU
 - LHCOPN
- Federated NOC experiences
 - EGEE, NDGF
- Multi-domain information systems

Federated Network Architecture models

- Three-layer architecture model
 - Infrastructure, Operations, and Services
 - Federate at all three layers
 - All communication between infrastructure and services layer managed by operations layers (procedures, tools, workflows)
- Simple and Complex model
 - Simple model with tightly managed inter-layer communication, and one-to-one relationships. Suitable for describing, say, application specific federated networks
 - Complex models with direct inter-component communication between layers and one-to-many relationships.

Architecture model A

Communication between elements within the same layer
Communication between different layers

Communication between the federation and services provided by end users

Architecture model B

Communication between elements within the same layer Communication between elements located in different layers Communication between different layers

Communication between the federation and services provided by

end users

Future Work & Test Cases

- Analysis of Federated Network Architecture Models
- Apply Federated Network Designs to GÈANT Network
 - Possible impact on future GÉANT network architecture
 - Possible implementation of test cases
- Test cases
 - Use of NREN cross-border-fibre (network resources) for GÉANT POP-to-POP connection - Integrating NREN network resources in GÉANT long-haul connectivity
 - Design of a federated GÉANT POP, serving multiple NRENs connecting on NREN network resources
 - Using cross-border fibre for NREN IP connectivity to GÉANT
- Test cases must handle network design, operational impact and workflows, and tools required
 - ... and consider cost sharing and procurement.

